Tobler’s first law in the digital economy based on the Internet of Everything: Priority issues
DOI:
https://doi.org/10.17072/1994-9960-2023-2-151-175Abstract
Introduction. W. Tobler, an American researcher, worded the first law of geography by linking the location with the interaction among economic agents. This produced spatial analysis and shaped spatial interactions in the pre-Internet era. However, the development of information and communication technologies doubted the significance of location and spatial distance in the emerging digital economy based on the Internet of People. Scientific discussions concerning this issue and empirical studies established that the modern digital economy, including the one derived from the Internet of Things, partially depends on the actual geographical space. In the next decade, further development of technologies could lead to a digital economy based on the Internet of Everything. Currently, there is no data about how spatially distributed economic agents will interact in the future digital world.
Purpose. The article formulates the questions concerning the Tobler’s first law with their future answers to confirm or refute the hypothesis about the spatial interactions in the digital economy based on the Internet of Everything.
Results. To achieve this goal, the Tobler’s first law is examined for the first time in the Russian scientific literature. Key implications and ambiguities of this law are formulated. The spatial interaction concept is clarified. The Internet of Things and the Internet of Everything are briefly described. The future digital economy is outlined, and the key questions are formulated.
Conclusion. Seven questions are given with their answers to assist us in identifying spatial interactions from different perspectives by machine-to-machine interaction, coverage of all types of economic activity, geographical proximity to the end user, gravitational interaction, economic-geographical location, economic regionalization, and spatial autocorrelation.
Keywords: digital economy, wireless communication, spatial interaction, economic agent, Internet of Things, Internet of Everything, economic-geographical location, gravitational model, economic regionalization, spatial autocorrelation
For citation
Blanutsa V. I. Tobler’s first law in the digital economy based on the Internet of Everything: Priority issues. Perm University Herald. Economy, 2023, vol. 18, no. 2, pp. 151–175. DOI 10.17072/1994-9960-2023-2-151-175
References
- Bukht R., Khiks R. Opredelenie, kontseptsiya i izmerenie tsifrovoi ekonomiki. Vestnik mezhdunarodnykh organizatsii = International Organisations Research Journal, 2018, vol. 13, no. 2, pp. 143–172. (In Russian). https://doi.org/10.17323/1996-7845-2018-02-07
- Goliński M. Digital economy, information economy, knowledge-based economy: Different definitions of the same phenomena or similar concepts defining different phenomena? Collegium of Economic Analysis Annals, 2018, no. 49, pp. 177–190.
- Belousov Yu. , Timofeeva O. I. Methodology for defining the digital economy. Mir novoi ekonomiki = The World of New Economy, 2019, vol. 13, no. 4, pp. 79–89. (In Russian). https://doi.org/10.26794/2220-6469-2019-13-4-79-89
- Dyachenko O. V. Categorical definition of digital economy in foreign and Russian economic theory. Ekonomicheskoe vozrozhdenie Rossii = Economic Revival of Russia, 2019, no. 1, pp. 86–98. (In Russian).
- Klochkova E. N., Prokhorov P. E. Definition of digital economy for the purposes of statistical Voprosy statistiki = Issues of Statistics, 2020, vol. 27, no. 4, pp. 66–79. (In Russian). https://doi.org/10.34023/2313-6383-2020-27-4-66-79
- Williams L. D. Concepts of digital economy and Industry 4.0 in intelligent and information systems. International Journal of Intelligent Networks, 2021, vol. 2, pp. 122–129. https://doi.org/10.1016/j.ijin.2021.09.002
- Tapscott D. The Digital Economy: Promise and Peril in the Age of Networked Intelligence. New York, McGraw-Hill, 1994. 368 p.
- Sturgeon T. J. Upgrading strategies for the digital economy. Global Strategy Journal, 2021, vol. 11, issue 1, pp. 34–57. https://doi.org/10.1002/gsj.1364
- Di Martino B., Li K.-C., Yang L. T., Esposito A. (Eds.) Internet of Everything: Algorithms, Methodologies, Technologies and Perspectives. Singapore, Springer, 2018. 236 p.
- Sheth K., Patel K., Shah H., Tanwar S., Gupta R., Kumar N. A taxonomy of AI techniques for 6G communication networks. Computer Communications, 2020, vol. 161, pp. 279–303. https://doi.org/10.1016/j.comcom.2020.07.035
- Da Costa V. C. F., Oliveira L., de Souza J. Internet of Everything (IoE) taxonomies: A survey and a novel knowledge-based taxonomy. Sensors, 2021, vol. 21, issue 2, e568. https://doi.org/10.3390/s21020568
- Guo F., Yu F. R., Zhang H., Li X., Ji H., Leung V. C. M. Enabling massive IoT toward 6G: A comprehensive survey. IEEE Internet of Things Journal, 2021, vol. 8, issue 15, pp. 11891–11915. https://doi.org/10.1109/JIOT.2021.3063686
- Prateek K., Ojha N. K., Altaf F., Maity S. Quantum secured 6G technology-based applications in Internet of Everything. Telecommunication Systems, 2023, vol. 82, pp. 315–344. https://doi.org/10.1007/s11235-022-00979-y
- Fujita M. Spatial interactions and agglomeration in urban economies. Chatterji M., Kuenne R. E. (Eds.). New Frontiers in Regional Science, London: Palgrave Macmillan, 1990, pp. 184–221. https://doi.org/10.1007/978-1-349-10633-2_14
- Wang J. Economic geography: Spatial Richardson D., Castree N., Goodchild M. F., Kobayashi A., Liu W., Marston R. A. (Eds.). The International Encyclopedia of Geography: People, the Earth, Environment and Technology, 2017, vol. 13, e0641. https://doi.org/10.1002/9781118786352.wbieg0641
- Tobler W. R. A Computer movie simulating urban growth in the Detroit region. Economic Geography, 1970, vol. 46, pp. 234–240. https://doi.org/10.2307/143141
- Fotheringham A., O’Kelly M. E. Spatial Interaction Models: Formulations and Applications. New York, Springer, 1989. 224 p.
- O’Brien R. Global Financial Integration: The End of Geography. London, Royal Institute of International Affairs, 1992. 120 p.
- Cairncross F. The Death of Distance: How the Communications Revolution Will Change Our Lives. Boston, Harvard Business School Press, 1997. 303 p.
- Graham S. The end of geography or the explosion of place? Conceptualizing space, place and information technology. Progress in Human Geography, 1998, vol. 22, no. 2, pp. 165–185.
- Olson G. M., Olson J. S. Distance matters. Human-Computer Interaction, 2000, vol. 15, pp. 139–178. https://doi.org/10.1207/S15327051HCI1523_4
- Greig J. M. The end of geography? Globalization, communications, and culture in the international system. Journal of Conflict Resolution, 2002, vol. 46, issue 2, pp. 225–243. https://doi.org/10.1177/0022002702046002003
- Morgan K. The exaggerated death of geography: Learning, proximity and territorial innovation systems. Journal of Economic Geography, 2004, vol. 4, issue 1, pp. 3–21. http://dx.doi.org/10.1093/jeg/4.1.3
- Lendle A., Olarreaga M., Schropp S., Vézina P.-L. There goes gravity: EBay and the death of distance. The Economic Journal, 2016, vol. 126, issue 591, pp. 406–441. https://doi.org/10.1111/ecoj.12286
- Stallkamp M., Schotter A. P. J. Platform without borders? The international strategies of digital platform firms. Global Strategy Journal, 2021, vol. 11, pp. 58–80. https://doi.org/10.1002/gsj.1336
- Li F., Chen Y., Liu L., Zhuang M. Do cross-national distances still affect the international penetration speed of digital innovation? The role of the global network effect. Heliyon, 2023, vol. 9, issue 3, e13911. https://doi.org/10.1016/j.heliyon.2023.e13911
- Aslesen H. W., Martin R., Sarbo S. The Virtual is reality! On physical and virtual space in software firms’ knowledge formation. Entrepreneurship and Regional Development, 2019, vol. 31, issue 9–10, pp. 669–682. https://doi.org/10.1080/08985626.2018.1552314
- Lutz S. U. The European digital single market strategy: Local indicators of spatial association 2011–2016. Telecommunications Policy, 2019, vol. 43, issue 5, pp. 393–410. https://doi.org/10.1016/j.telpol.2018.10.003
- Ding C., Liu C., Zheng C., Li F. Digital economy, technological innovation and high-quality economic development: Based on spatial effect and mediation effect. Sustainability, 2022, vol. 14, issue 1, e216. https://doi.org/10.3390/su14010216
- Wang H., Hu X., Ali N. Spatial characteristics and driving factors toward the digital economy: Evidence from prefecture-level cities in China. Journal of Asian Finance, Economics and Business, 2022, vol. 9, issue 2, pp. 419–426. https://doi.org/10.13106/jafeb.2022.vol9.no2.0419
- Zhu W., Chen J. The spatial analysis of digital economy and urban development: A case study in Hangzhou, China. Cities, 2022, vol. 123, e103563. https://doi.org/10.1016/j.cities.2022.103563
- Chen Y., Xu S., Lyulyov O., Pimonenko T. China’s digital economy development: Incentives and challenges. Technological and Economic Development of Economy, 2023, vol. 29, no. 2, pp. 518–538. https://doi.org/10.3846/tede.2022.18018
- Roy J. R., Thill J.C. Spatial interaction Florax R. J. G. M., Plane D. A. (Eds.). Fifty Years of Regional Science, Berlin; Heidelberg: Springer, 2004, pp. 339–361. https://doi.org/10.1007/978-3-662-07223-3_15
- Pooler J. An extended family of spatial interaction models. Progress in Human Geography, 1994, vol. 18, issue 1, pp. 17–39. https://doi.org/10.1177/030913259401800102
- Dobkins L. H., Ioannides Y. M. Spatial interactions among U.S. cities: 1900–1990. Regional Science and Urban Economics, 2001, vol. 31, issue 6, pp. 701–731. https://doi.org/10.1016/S0166-0462(01)00067-9
- Tan R., Zhou K., He Q., Xu H. Analyzing the effects of spatial interaction among city clusters on urban growth – Case of Wuhan urban agglomeration. Sustainability, 2016, vol. 8, issue 8, e759. https://doi.org/10.3390/su8080759
- Ferraresi M. Political cycles, spatial interactions and yardstick competition: Evidence from Italian cities. Journal of Economic Geography, 2020, vol. 20, issue 4, pp. 1093–1115. http://dx.doi.org/10.1093/jeg/lbz036
- Mosconi E. M., Colantoni A., Gambella F., Cudlinová E., Salvati L., Rodrigo-Comino J. Revisiting the environmental Kuznets curve: The spatial interaction between economy and territory. Economies, 2020, vol. 8, issue 3, e74. https://doi.org/10.3390/economies8030074
- Kivi L. H., Paas T. Spatial interactions of employment in European labour markets. Eastern Journal of European Studies, 2021, vol. 12, pp. 196–211. https://doi.org/10.47743/ejes-2021-SI09
- Kim J. S., Patacchini E., Picard P. M., Zenou Y. Spatial Interactions (IZA DP No. 15376). Bonn, IZA Institute of Labor Economics, 2022. 60 p.
- Bergstrand J. H. The gravity equation in international trade: Some microeconomic foundations and empirical evidence. The Review of Economics and Statistics, 1985, vol. 67, no. 3, pp. 474–481. https://doi.org/10.2307/1925976
- Anderson J. E. The gravity model. Annual Review of Economics, 2011, vol. 3, pp. 133–160. https://doi.org/10.1146/annurev-economics-111809-125114
- Nijkamp P., Ratajczak W. Gravitational analysis in regional science and spatial economics: A vector gradient approach to trade. International Regional Science Review, 2021, vol. 44, issue 3–4, pp. 400–431. https://doi.org/10.1177/0160017620980519
- Nadal J. R., Gallego M. S. Gravity models for tourism demand modeling: Empirical review and outlook. Journal of Economic Surveys, 2022, vol. 36, issue 5, pp. 1358–1409. https://doi.org/10.1111/joes.12502
- Capoani L. Review of the gravity model: Origins and critical analysis of its theoretical development. SN Business and Economics, 2023, vol. 3, e95. https://doi.org/10.1007/s43546-023-00461-0
- Fotheringham A. S., Brunsdon C., Charlton M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships. Chichester, John Wiley & Sons, 2002. 269 p.
- Lu B., Charlton M., Harris P., Fotheringham A. S. Geographically weighted regression with a non-euclidean distance metric: A case study using hedonic house price data. International Journal of Geographical Information Science, 2014, vol. 28, issue 4, pp. 660–681. https://doi.org/10.1080/13658816.2013.865739
- Fotheringham A. S., Yang W., Kang W. Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 2017, vol. 107, issue 6, pp. 1247–1265. https://doi.org/10.1080/24694452.2017.1352480
- Kim M.-K., Graefe D. Geographically weighted regression to explore spatially varying relationships of recreation resource impacts: A case study from Adirondack Park, New York, USA. Journal of Park and Recreation Administration, 2021, vol. 39, no. 2, pp. 43–63. https://doi.org/10.18666/JPRA-2020-10515
- Klippel A., Hardisty F., Li R. Interpreting spatial patterns: An inquiry into formal and cognitive aspects of Tobler’s first law of geography. Annals of the Association of American Geographers, 2011, 101, issue 5, pp. 1011–1031. https://doi.org/10.1080/00045608.2011.577364
- Mitchell R., Lee D. Is there really a “wrong side of the tracks” in urban areas and does it matter for spatial analysis? Annals of the Association of American Geographers, 2014, vol. 104, issue 3, pp. 432–443. https://doi.org/10.1080/00045608.2014.892321
- Huang H.-C., Hung C.-F., Peng C.-L., Liao T.-H. Business income tax from profit-seeking enterprises and spatial autocorrelation: Do local economic characteristics matter? Land, 2022, vol. 11, issue 9, e1533. https://doi.org/10.3390/land11091533
- Longley P. A., Goodchild M. F., Maguire D. J., Rhind D. W. (Eds.) Geographic Information Systems and Science. 4th Ed. New York, Wiley, 2015. 496 p.
- Blanutsa V. I. Spatial diffusion of digital innovations: Trends, problems and prospects of empirical research. Prostranstvennaya ekonomika = Spatial Economics, 2021, vol. 14, no. 4, pp. 118–142. (In Russian). https://doi.org/10.14530/se.2021.4.118-142
- Blanutsa V. I. Regionalization of digital economic space: Contours of emerging approaches. Prostranstvennaya ekonomika = Spatial Economics, 2022, vol. 18, no. 2, pp. 56–82. (In Russian). https://doi.org/10.14530/se.2022.2.056-082
- Lu Y., Cao K. Spatial analysis of big data industrial agglomeration and development in China. Sustainability, 2019, vol. 11, issue 6, e1783. https://doi.org/10.3390/su11061783
- Corradini C., Santini E., Vecciolini C. The geography of Industry 4.0 technologies across European regions. Regional Studies, 2021, vol. 55, issue 10–11, pp. 1667–1680. https://doi.org/10.1080/00343404.2021.1884216
- Russo M., Caloffi A., Colovic A., Pavone P., Romeo S., Rossi F. Mapping regional strengths in a key enabling technology: The distribution of Internet of Things competences across European regions. Papers in Regional Science, 2022, vol. 101, issue 4, pp. 875–900. https://doi.org/10.1111/pirs.12679
- Li X. The first law of geography and spatial-temporal proximity. Chinese Journal of Nature, 2007, vol. 29, issue 2, pp. 69–71.
- Grasland C. Spatial analysis of social facts. Bavaud F., Mager C. (Eds.). Handbook of Theoretical and Quantitative Geography, Lausanne: University of Lausanne, 2009, pp. 117–174.
- Sun J., Pan Y., He R., Liu H., Chang N., Liu S., Li H. The enlightenment of geographical theories construction from the first law of geography and its debate. Geographical Research, 2012, vol. 31, issue 10, pp. 1737–1748. https://doi.org/10.11821/yj2012100001
- Westlund H. A brief history of time, space, and growth: Waldo Tobler’s first law of Geography revisited. The Annals of Regional Science, 2013, vol. 51, no. 3, pp. 917–924. https://doi.org/10.1007/s00168-013-0571-3
- Sui D. Z. Tobler’s first law of geography: A big idea for a small world? Annals of the Association of American Geographers, 2004, vol. 94, issue 2, pp. 269–277. https://doi.org/10.1111/j.1467-8306.2004.09402003.x
- Waters N. Tobler’s first law of geography. Richardson D., Castree N., Goodchild M. F., Kobayashi A., Liu W., Marston R. A. (Eds.). The International Encyclopedia of Geography: People, the Earth, Environment and Technology, Chichester: John Wiley & Sons, 2017, vol. 13, e1011. https://doi.org/10.1002/9781118786352.wbieg1011
- Murray A. T., Xu J., Baik J., Burtner S., Cho S., Noi E., Pludow B. A., Zhou E. Overview of contributions in geographical analysis: Waldo Tobler. Geographical Analysis, 2020, vol. 52, issue 4, pp. 480–493. https://doi.org/10.1111/gean.12257
- Manning N., Li Y., Liu J. Broader applicability of the metacoupling framework than Tobler’s first law of geography for global sustainability: A systematic review. Geography and Sustainability, 2023, 4, issue 1, pp. 6–18. https://doi.org/10.1016/j.geosus.2022.11.003
- Bergmann L., O’Sullivan D. Reimagining GIScience for relational spaces. The Canadian Geographer, 2018, vol. 62, issue 1, pp. 7–14. https://doi.org/10.1111/cag.12405
- Anselin L., Li X. Tobler’s law in multivariate world. Geographical Analysis, 2020, vol. 52, issue 4, pp. 494–510. https://doi.org/10.1111/gean.12237
- Agyemang F., Silva E., Amedzro K. The emergence of city-regions and their implications for contemporary spatial governance: Evidence from Ghana. Cities, 2017, vol. 71, pp. 70–79. https://doi.org/10.1016/j.cities.2017.07.009
- Church R. L. Tobler’s law and spatial optimization: Why Bakersfield? International Regional Science Review, 2018, vol. 41, issue 3, pp. 287–310. https://doi.org/10.1177/0160017616650612
- Joo D., Woosnam K. M., Shafer C. S., Scott D., An S. Considering Tobler’s first law of geography in a tourism context. Tourism Management, 2017, vol. 62, pp. 350–359. https://doi.org/10.1016/j.tourman.2017.03.021
- Lv Z., Zhang P., Benediktsson J. A. Automatic object-oriented, spectral-spatial feature extraction driven by Tobler’s first law of geography for very high resolution aerial imagery classification. Remote Sensing, 2017, vol. 9, issue 3, e285. https://doi.org/10.3390/rs9030285
- Zheng B., Lin X., Yin D., Qi X. Does Tobler’s first law of geography apply to Internet attention? A case study of the Asian Elephant northern migration event. PLoS ONE, 2023, vol. 18, no. 3, e0282474. https://doi.org/10.1371/journal.pone.0282474
- Lengyel B., Varga A., Ságvári B., Jakobi Á., Kertész J. Geographies of an online social network. PLoS ONE, 2015, vol. 10, no. 9, e0137248. https://doi.org/10.1371/journal.pone.0137248
- Laniado D., Volkovich Y., Scellato S., Mascolo C., Kaltenbrunner A. The impact of geographic distance on online social interactions. Information Systems Frontiers, 2018, vol. 20, no. 6, pp. 1203–1218. https://doi.org/10.1007/s10796-017-9784-9
- Hecht B., Moxley E. Terabytes of Tobler: Evaluating the first law in a massive, domain-neutral representation of world knowledge. Proceedings of the 9th International Conference on Spatial Information Theory. Heidelberg: Springer, 2009, vol. 5756, pp. 88–105. https://doi.org/10.1007/978-3-642-03832-7_6
- Han S. Y., Tsou M. H., Clarke K. C. Revisiting the death of geography in the era of big data: The friction of distance in cyberspace and real space. International Journal of Digital Earth, 2018, vol. 11, no. 5, pp. 451–469. https://doi.org/10.1080/17538947.2017.1330366
- Li W., Hsu C. Y., Hu M. Tobler’s first law in GeoAI: A spatially explicit deep learning model for terrain feature detection under weak supervision. Annals of the American Association of Geographers, 2021, vol. 111, issue 7, pp. 1887–1905. https://doi.org/10.1080/24694452.2021.1877527
- Van der Zee E., Scholten H. Spatial dimensions of big data: Application of geographical concepts and spatial technology to the Internet of Things. Bessis N. Dobre C. (Eds.). Big Data and Internet of Things: A Roadmap for Smart Environments, Springer Cham, 2014, pp. 137–168. https://doi.org/10.1007/978-3-319-05029-4_6
- Blanutsa V. I. Obshchestvennaya geografiya: tsifrovye prioritety XXI veka. Moscow, INFRA-M Publ., 2022. 252 p. (In Russian).
- Bazargani J. S., Sadeghi-Niaraki A., Choi S.-M. A survey of GIS and IoT integration: Applications and architecture. Applied Sciences, 2021, vol. 11, issue 21, e10365. https://doi.org/10.3390/app112110365
- Cao H., Wachowicz M. The design of an IoT-GIS platform for performing automated analytical tasks. Computers, Environment and Urban Systems, 2019, vol. 74, pp. 23–40. https://doi.org/10.1016/j.compenvurbsys.2018.11.004
- Kamilaris A., Ostermann F. Geospatial analysis and the Internet of Things. International Journal of Geo-Information, 2018, vol. 7, issue 7, e269. https://doi.org/10.3390/ijgi7070269
- Silva D. S., Holanda M. Applications of geospatial big data in the Internet of Things. Transactions in GIS, 2022, vol. 26, issue 1, pp. 41–71. https://doi.org/10.1111/tgis.12846
- Alvarez León L. F. Property regimes and the commodification of geographic information: An examination of Google street view. Big Data and Society, 2016, vol. 3, no. 2, pp. 1–13. https://doi.org/10.1177/2053951716637885
- Alvarez León L. F., Gleason C. J. Production, property, and the construction of remotely sensed data. Annals of the American Association of Geographers, 2017, vol. 107, issue 5, pp. 1075–1089. https://doi.org/10.1080/24694452.2017.1293498
- Alvarez León L. F. Information policy and the spatial constitution of digital geographic information markets. Economic Geography, 2018, vol. 94, issue 3, pp. 217–237. https://doi.org/10.1080/00130095.2017.1388161
- Walker R. T. Geography, Von Thunen, and Tobler’s first law: Tracing the evolution of a concept. Geographical Review, 2022, vol. 112, issue 4, pp. 591–607. https://doi.org/10.1080/00167428.2021.1906670
- Zhu R., Janowicz K., Mai G. Making direction a first-class citizen of Tobler’s first law of geography. Transactions in GIS, 2019, vol. 23, issue 3, pp. 398–416. https://doi.org/10.1111/tgis.12550
- Goodchild M. F. The validity and usefulness of laws in geographic information science and geography. Annals of the Association of American Geographers, 2004, vol. 94, issue 2, pp. 300–303. https://doi.org/10.1111/j.1467-8306.2004.09402008.x
- Tobler W. R. On the first law of geography: A reply. Annals of the Association of American Geographers, 2004, vol. 94, issue 2, pp. 304–310. https://doi.org/10.1111/j.1467-8306.2004.09402009.x
- Foresmann T., Luscombe R. The second law of geography for a spatially enabled economy. International Journal of Digital Earth, 2017, vol. 10, issue 10, pp. 979–995. https://doi.org/10.1080/17538947.2016.1275830
- Zhu A., Lu G., Liu J., Qin C.-Z., Zhou C. Spatial prediction based on third law of geography. Annals of GIS, 2018, vol. 24, issue 4, pp. 225–240. https://doi.org/10.1080/19475683.2018.1534890
- Baranskii N. N. Izbrannye trudy. Stanovlenie ekonomicheskoi geografii. Moscow, Mysl' Publ., 1980. 287 p. (In Russian).
- Kolosovskii N. N. Teoriya ekonomicheskogo raionirovaniya. Moscow, 1969. 336 (In Russian).
- Blanutsa V. I. Economic-geographical location: generalization of conceptual frameworks and generation of new meanings. Geography and Natural Resources, 2015, 4, pp. 319–326. https://doi.org/10.1134/S1875372815040010
- Blanutsa V. I. Sotsial'no-ekonomicheskoe raionirovanie v epokhu bol'shikh dannykh. Moscow, INFRA-M Publ., 2018. 194 p. (In Russian).
- Want R., Schilit B. N., Jenson S. Enabling the Internet of Things. Computer, 2015, vol. 48, issue 1, pp. 28–35. https://doi.org/10.1109/MC.2015.12
- Evans D. The Internet of Things. How the Next Evolution of the Internet Is Changing Everything? San Jose, Cisco Systems, 2011. 11 p.
- Sorri K., Mustafee N., Seppänen M. Revisiting IoT definitions: A framework towards comprehensive use. Technological Forecasting and Social Change, 2022, vol. 179, e121623. https://doi.org/10.1016/j.techfore.2022.121623
- Gubbi J., Buyya R., Marusic S., Palaniswami M. Internet of Things (IoT): A vision, architectural elements, and future direction. Future Generation Computer Systems, 2013, vol. 29, issue 7, pp. 1645–1660. https://doi.org/10.1016/j.future.2013.01.010
- Al-Fuqaha A., Guizani M., Mohammadi M., Aledhari M., Ayyash M. Internet of Things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys and Tutorials, 2015, vol. 17, issue 4, pp. 2347–2376. https://doi.org/10.1109/COMST.2015.2444095
- Madakam S., Ramaswamy R., Tripathi S. Internet of Things (IoT): A literature review. Journal of Computer and Communications, 2015, vol. 3, no. 5, e164. https://doi.org/10.4236/jcc.2015.35021
- Asghari P., Rahmani A. M., Javadi H. H. S. Internet of Things application: A systematic review. Computer Networks, 2019, vol. 148, pp. 241–261. https://doi.org/10.1016/j.comnet.2018.12.008
- Wang J., Lim M. K., Wang C., Tseng M.-L. The evolution of the Internet of Things (IoT) over the past 20 years. Computers and Industrial Engineering, 2021, vol. 155, e107174. https://doi.org/10.1016/j.cie.2021.107174
- Laghari A. A., Wu K., Laghari B. A., Ali M., Khan A. A. A review and state of art of Internet of Things (IoT). Archives of Computational Methods in Engineering, 2022, vol. 29, pp. 1395–1413. https://doi.org/10.1007/s11831-021-09622-6
- Lu Y., Zheng X. 6G: A survey on technologies, scenarios, challenges, and the related issues. Journal of Industrial Information Integration, 2020, vol. 19, e100158. https://doi.org/10.1016/j.jii.2020.100158
- Younis M. Internet of Everything and everybody: Architecture and service virtualization. Computer Communications, 2018, vol. 131, pp. 66–72. https://doi.org/10.1016/j.comcom.2018.07.008
- Dey N., Shinde G., Mahalle P., Olesen H. (Eds.). The Internet of Everything: Advances, Challenges and Applications. Berlin, Boston, Walter de Gruyter GmbH, 2019. 184 p.
- Friday E. A., Shomope A., Adebowale A. G. Internet of Everything: A global solution to digital world. Journal of Computer Science and Technology Studies, 2021, vol. 3, no. 2, pp. 44–49. https://doi.org/10.32996/jcsts.2021.3.2.4
- Aujla G. S., Garg S., Kaur K., Sikdar B. (Eds.). Software Defined Internet of Everything. Springer Cham, 2022. 302 p.
- Xue J., Li Z., Wang X., Ji Y. Dynamic evaluation and spatial characteristics of smart manufacturing capability in China. Sustainability, 2022, vol. 14, issue 17, e10733. https://doi.org/10.3390/su141710733
- Balland P. A., Boschma R. Mapping the potentials of regions in Europe to contribute to new knowledge production in Industry 4.0 technologies. Regional Studies, 2021, vol. 55, issue 10–11, pp. 1652–1666. https://doi.org/10.1080/00343404.2021.1900557
- Fraske T. Industry 4.0 and its geographies: A systematic literature review and the identification of new research avenues. Digital Geography and Society, 2022, vol. 3, e100031. https://doi.org/10.1016/j.diggeo.2022.100031
- Nick G., Várdego T., Nagy C., Szaller A. The territorial contexts of Industry 4.0 in Hungary, the present and future challenges and expectations of the digital ecosystem. DETUROPE – The Central European Journal of Regional Development and Tourism, 2019, vol. 11, no. 3, pp. 29–58.
- Bettiol M., Capestro M., De Marchi V., Di Maria E., Sedita S. R. Industrial districts and the fourth industrial revolution. Competitiveness Review: An International Business Journal, 2020, vol. 31, issue 1, pp. 12–26. https://doi.org/10.1108/CR-12-2019-0155
- Lima D., Miranda H. A Geographical-aware state deployment service for fog computing. Computer Networks, 2022, vol. 216, e109208. https://doi.org/10.1016/j.comnet.2022.109208
- Crespo J. Agencies, scales and times of path creation: The case of IoT in Toulouse. Regional Science. Policy and Practice, 2021, vol. 13, issue 5, pp. 1527–1545. https://doi.org/10.1111/rsp3.12390
- Blanutsa V. I. Geographical study of platform economy: Existing and possible approaches. Izvestiya RAN. Seriya geograficheskaya = RAS News. Geography Series, 2022, vol. 86, no. 2, pp. 155–167. (In Russian). https://doi.org/10.31857/S2587556622020030
- Amoore L. Cloud geographies: Computing, data, sovereignty. Progress in Human Geography, 2018, vol. 42, issue 1, pp. 4–24. https://doi.org/10.1177/0309132516662147
- Hasenburg J., Bermbach D. GeoBroker: Leveraging geo-contexts for IoT data distribution. Computer Communications, 2020, vol. 151, pp. 473–484. https://doi.org/10.1016/j.comcom.2020.01.015
- Kim M.-S. Research issues and challenges related to Geo-IoT platform. Spatial Information Research, 2018, vol. 26, no. 1, pp. 113–126. https://doi.org/10.1007/s41324-017-0161-z
- Korte A., Tiberius V., Brem A. Internet of Things (IoT) technology research in business and management literature: Results from a co-citation analysis. Journal of Theoretical and Applied Electronic Commerce Research, 2021, vol. 16, issue 6, pp. 2073–2090. https://doi.org/10.3390/jtaer16060116
- Langley D. J., van Doorn J., Ng I. C. L., Stieglitz S., Lazovik A., Boonstra A. The Internet of Everything: Smart things and their impact on business models. Journal of Business Research, 2021, vol. 122, pp. 853–863. https://doi.org/10.1016/j.jbusres.2019.12.035
- Rejeba A., Suhaiza Z., Rejeb K., Seuring S., Treiblmaier H. The Internet of Things and the circular economy: A systematic literature review and research agenda. Journal of Cleaner Production, 2022, vol. 350, e131439. https://doi.org/10.1016/j.jclepro.2022.131439
- Alsamhi S. H., Ma O., Ansari M. S., Meng Q. Greening Internet of Things for greener and smarter cities: A survey and future prospects. Telecommunication Systems, 2019, vol. 72, no. 4, pp. 609–632. https://doi.org/10.1007/s11235-019-00597-1
- Szum K. IoT-based smart cities: A bibliometric analysis and literature review. Engineering Management in Production and Services, 2021, vol. 13, no. 2, pp. 115–136. http://dx.doi.org/10.2478/emj-2021-0017
- Tirandazi P., Bamakan S. M. H., Toghroljerdi A. A review of studies of Internet of Everything as an enabler of neuromarketing methods and techniques. The Journal of Supercomputing, 2023, vol. 79, pp. 7835–7876. https://doi.org/10.1007/s11227-022-04988-1
- Li C., Cai Q., Lou Y. Optimal data placement strategy considering capacity limitation and load balancing in geographically distributed cloud. Future Generation Computer Systems, 2022, vol. 127, pp. 142–159. https://doi.org/10.1016/j.future.2021.08.014
- Islam M. M., Ramezani F., Lu H. Y., Naderpour M. Optimal placement of applications in the fog environment: A systematic literature review. Journal of Parallel and Distributed Computing, 2023, vol. 174, pp. 46–69. https://doi.org/10.1016/j.jpdc.2022.12.001
- Friedman T. L. The World Is Flat: A Brief History of the Twenty-First Century. New York, Farrar, Straus & Giroux, 2005. 488 p.
- Parker G. G., van Alstyne M. W., Choudary S. Platform Revolution: How Networked Markets Are Transforming the Economy and How to Make Them Work for You. New York, W.W. Norton & Company, 2016. 211 p.
- Blanutsa V. I. Territorial structure of digital economy of Russia: Preliminary delimitation of ‘smart’ urban agglomerations and regions. Prostranstvennaya ekonomika = Spatial Economics, 2018, no. 2, pp. 17–35. (In Russian). https://doi.org/10.14530/se.2018.2.017-035
- Anderson J. E. Theoretical foundation for the gravity equation. American Economic Review, 1979, vol. 69, no. 1, pp. 106–116.
- Anderson J. E., van Wincoop E. Gravity with gravitas: A solution to the border puzzle. American Economic Review, 2003, vol. 93, no. 1, pp. 170–192. https://doi.org/1257/000282803321455214
- Blanutsa V. I., Cherepanov K. A. Tsifrovaya ekonomika Irkutskoi oblasti: gravitatsionnaya model' polyusov rosta. Innovatsionnoe razvitie ekonomiki = Innovative Development of Economy, 2019, no. 6, pp. 27–34. (In Russian).
- Metin I., Tepe G. Gravity model: A bibliometric analysis and detailed overview. International Journal of Business and Society, 2021, vol. 22, no. 1, pp. 365–381. https://doi.org/10.33736/ijbs.3183.2021
- Hellwig V. Digital gravity? Firm birth and relocation patterns of young digital firms in Germany. Journal of Regional Science, 2023, vol. 63, issue 2, 340–378. https://doi.org/10.1111/jors.12624
- Yang C., An T. The Internet reshapes China’s economic geography: Micromechanisms and macro effects. China Political Economy, 2020, vol. 3, issue 2, pp. 341–365. https://doi.org/10.1108/CPE-10-2020-0014
- Harris A. Vertical urbanisms: Opening up geographies of the three-dimensional city. Progress in Human Geography, 2014, vol. 39, issue 5, pp. 601–620. https://doi.org/10.1177/0309132514554323
- Anselin D. Local indicators of spatial association – LISA. Geographical Analysis, 1995, vol. 27, issue 2, pp. 93–115. https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
- Xu Z., Ci F. Spatial-temporal characteristics and driving factors of coupling coordination between the digital economy and low-carbon development in the Yellow river basin. Sustainability, 2023, vol. 15, issue 3, e2731. https://doi.org/10.3390/su15032731