Administrative data source based research methods for territory defined structure of budget investments

Authors

  • Natalia N. Kovalenko Plekhanov Russian University of Economics

DOI:

https://doi.org/10.17072/1994-9960-2023-3-258-274

Abstract

Introduction. The paper examines the territory defined structure of the budget investments in the Russian Federation constituents.

Purpose. The paper aims at identifying and quantitatively evaluating the connection between the structure indicators of the budget investments and their frequency (per capita, square kilometer, gross regional product) by the groups of regions.

Materials and Methods. The research referred to the administrative data sources with the information by the Russian Federation constituents included in the budget expenditure, its spending, investments in targeted investment programs. The paper applies theoretical and mathematical statistical methods of cluster analysis.

Results. The paper structurizes the stages of budget legal arrangements and describes an original budget investment flow diagram at the federal, regional, and local levels. The research compares and analyzes the information capacities of the official statistics data and administrative resources in terms of budget investments by sources, composition, flow stages, administrative territorial levels. The original indicator system helps evaluate the territory defined structure of the budget investments with the cluster analysis methods.

Conclusion. The results obtained by the author together with the administrative data and official statistics provide the informational grounds for comprehensive accounting and analysis of budget investment flows. The author’s methodological approach to a multidimensional study of a territory defined budget investment structure could be used by the executive authorities and local self-governments.

Keywords: budget investments, multidimensional statistical analysis, cluster analysis, dynamic analysis, structural analysis, comparative analysis, socio-economic development

For citation

Kovalenko N. N. Administrative data source based research methods for territory defined structure of budget investments. Perm University Herald. Economy, 2023, vol. 18, no. 3, pp. 258–274. DOI 10.17072/1994-9960-2023-3-258-274. EDN DZOQQJ.

References

  1. Shash N. N., Krasheninnikov Yu. S. Impact of budget investments on the development of the infrastructure market: the case of the Russian Federation. Ekonomika i upravlenie: nauchno-prakticheskii zhurnal = Economics and Management: Scientific and Practical Journal, 2022, no. 3 (165), pp. 43–50. (In Russian). DOI 10.34773/EU.2022.3.8. EDN BYNBJA.
  2. Zholudeva V. V., Melnichenko N. F., Kozlov G. E. The use of cluster analysis to evaluate socio-economic development of regions (evidence from the Yaroslavl region). Ekonomika, statistika i informatika. Vestnik UMO = Economics, Statistics, and Computer Science. Bulletin of UMO, 2014, no. 1, pp. 144–148. (In Russian). EDN RVQXBV.
  3. Zholudeva V. V. Assessment of the socio-economic situation of the municipal districts of the Yaroslavl region based on cluster analysis. Vestnik APK Verkhnevolzh'ya = Agroindustrial Complex of Upper Volga Region Herald, 2023, no. 1 (61), pp. 97–103. (In Russian). DOI 10.35694/YARCX.2023.61.1.012. EDN RRMTYJ.
  4. Treschevskiy I., Kruglyakova V. M. Cluster approach to the analysis of factors and conditions of investment activity in Russian regions. Ekonomika i upravlenie = Economics and Management, 2011, no. 7 (69), pp. 17–21. (In Russian). EDN NXPJYZ.
  5. Chistik O. F. Klasternyi analiz regionov Rossiiskoi Federatsii po urovnyu investitsii v osnovnoi kapital. Vestnik Samarskogo gosudarstvennogo ekonomicheskogo universiteta = Vestnik of Samara State University of Economics, 2015, no. 6 (128), pp. 91–94. (In Russian). EDN UIHYYL.
  6. Dubravskaya E. I. Issledovanie struktury neformal'noi zanyatosti v Rossii na osnove integrirovaniya metodov faktornogo i klasternogo analiza. Nauka o dannykh = Data Science. Saint Petersburg, SPbGEU, 2020, pp. 99–101. (In Russian). EDN BRWXLA.
  7. Nechiporuk O.V. Cluster analysis as a tool for forming the priorities of state investment policy. Ukraїns'kii zhurnal prikladnoї ekonomіki = Ukrainian Journal of Applied Economics and Technology, 2021, vol. 6, no. 1, pp. 252–260. (In Ukrainian). DOI 10.36887/2415-8453-2021-1-30.
  8. Demina R. Yu., Azmukhamedov I. M. Increasing quality of classifying objects using new metrics of clustering. Vestnik Astrakhanskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Upravlenie, vychislitel'naya tekhnika i informatika = Vestnik of Astrakhan State Technical University. Series: Management, Computer Sciences and Informatics, 2019, no. 4, pp. 106–114. (In Russian). DOI 10.24143/2072-9502-2019-4-106-114. EDN TGWDJK.
  9. Kryuchkova P. V., Zarova E. V. regionalization of value added calculations by industry on the basis of production functions. Voprosy statistiki = Statistics Issues, 2019, vol. 26, no. 4, pp. 45–58. (In Russian). DOI 10.34023/2313-6383-2019-26-4-45-58. EDN RVQTXX.
  10. Kovalenko N. N. Evaluation of the statistical distribution of indexes of the structure of budget investments. Statistika i Ekonomika = Statistics and Economics, 2023, vol. 20, no. 4, pp. 66–76. (In Russian). DOI 10.21686/2500-3925-2023-4-66-76. EDN LJCHFL.
  11. Derkach D. D., Studenova M. P., Dotsenko O. S. Byudzhetnoe investirovanie. Voprosy ekonomiki i upravleniya = Issues of Economics and Management, 2016, no. 4-1 (6), pp. 8–11. (In Russian). EDN WCZNUH.
  12. Steinley D. Properties of the Hubert-Arable adjusted Rand index. Psychological Methods, 2004, vol. 9, iss. 3, pp. 386–396. DOI 10.1037/1082-989X.9.3.386.
  13. Sundqvist M., Chiquet J., Rigaill G. Adjusting the adjusted Rand Index: A multinomial story. Computational Statistics, 2023, vol. 38, iss. 1, pp. 327–347. DOI 10.1007/s00180-022-01230-7.
  14. Junusbekova G. A., Kozhumov A. S. Analysis of evaluation of achievement of strategic planning goals in the public sector. The Journal of Economic Research & Business Administration, 2021, no. 3 (137), pp. 125–138. (In Russian). DOI 10.26577/be.2021.v137.i3.12.
  15. AL Ani M. K., Chavali K. The relationship between investment intensity and profitability measures from the perspective of foreign investors. Humanities and Social Sciences Communications, 2023, vol. 10, Article 76. DOI 10.1057/s41599-023-01571-8.
  16. Belotserkovskaya E. M., Belotserkovskaya N. V., Kalieva O. M., Sheptukhin M. V. O sushchnosti ekonomicheskogo ponyatiya «klaster». Molodoi uchenyi = Young Scientist, 2017, no. 12 (146), pp. 228–233. Available at: https://moluch.ru/archive/146/41019 (access date 10.05.2023). EDN YHWXIF.
  17. Prokopev A. V., Prokopeva T. V. Assessment of the correlation level between the gross regional product and the volume of fixed investments by Russian regions. Obshchestvo: politika, ekonomika, pravo = Society: Politics, Economics, Law, 2021, no. 12 (101), pp. 63–73. (In Russian). DOI 10.24158/pep.2021.12.10. EDN UASJRJ.
  18. Tarakanova I. V. Quantitative estimates of the impact of budget investment sin economic growth. Nalogi. Pravo = Economics, taxies and Law, 2022, vol. 15, no. 4, pp. 107–115. (In Russian). DOI 10.26794/1999-849X-2022-15-4-107-115. EDN LTJEYZ.
  19. Syupova M. S., Bondarenko N. A. The system of regional economic security indicators. Vestnik Tikhookeanskogo gosudarstvennogo universiteta = Bulletin of Pacific Ocean State University, 2019, no. 4 (55), pp. 67–80. (In Russian). EDN CPOPCO.
  20. Rand W. M. Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association, 1971, vol. 66, iss. 336, pp. 846–850. DOI 10.2307/2284239.
  21. Hubert L., Arabie P. Comparing Partitions. Journal of Classification, 1985, no. 2, pp. 193–218. DOI 10.1007/BF01908075.
  22. Marvin K. Creating diversified portfolios using cluster analysis: Independent Work Report Fall. 2015. 26 p.
Show full text

Information about the Author

  • Natalia N. Kovalenko, Plekhanov Russian University of Economics

    Director at the Situational Center for Socio-Economic Development of the Regions of the Russian Federation

Downloads

Published

2023-11-01

Issue

Section

Mathematical, statistical and instrumental methods in economy