Оpen personal intellectual technology for development and application of adaptive methods of assessment of investment attractiveness and creditworthiness of enterprises
DOI:
https://doi.org/10.17072/1994-9960-2019-1-20-50Abstract
Reliable assessment of the economic and financial activities of enterprises is important both for enterprises in order to take adequate measures in advance to get out of the crisis, and for investors and creditors, for whom the risk of bankruptcy of the financed enterprise is directly related to the risk of default on investments or loans. Thus, a reliable tool for assessing the risks of crediting to enterprises is necessary as it will allow assessing the investment attractiveness and creditworthiness of an enterprise. However, several problems due to which a company can not access the application of such techniques have been revealed during the study: 1) lack of methods for reliable assessment of credit risks of various enterprises; 2) high cost of services for development and adaptation of the credit risk assessment methods; 3) inability to purchase this technology for self-use; 4) high complexity and laboriousness of the development of mathematical models necessary for this technology implementing their algorithms and data structures, as well as software tools that provide the possibility of practical application of these models. The authors have substantiated that the problems mentioned above can be solved by applying a new innovation technology of artificial intelligence – automated system-cognitive analysis equipped with its own software tools of personal level – intellectual system “Eidos” (open software). The technology will be used as a form of adaptive methods for assessing the crediting risk of enterprises. The novelty of the study concerns the development of an open personal intellectual technology for creating adaptive techniques for the assessment of investment attractiveness and creditworthiness of an enterprise on the basis of the automated system-cognitive analysis and “Eidos” system. It allows using the original approach for the study of a huge range of social and economic systems and processes. The results obtained during the study have scientific and applied significance and lie in the development of an open personal technology that allows creating new methods for an enterprise’s crediting risk assessment on its basis with the tools of an automated system-cognitive analysis of initial financial data about an enterprise economic activity. They also concern the development of an environment for the application of these techniques in practice in an adaptive regime. A detailed numerical example of the use of the automated system-cognitive analysis as a technology for creating a method of crediting risk assessment is provided in the article. Further studies will concern the development of adaptive methods of crediting risk assessment that will consider the specifics of economic activity of enterprises, their localization, characteristics and dynamics of the external environment.
Keywordsautomated system-cognitive analysis, economic-mathematical models, software product, intellectual system “Eidos”, assessment reliability, financial condition of an enterprise, crediting risks, an enterprise’s creditworthiness, investment attractiveness of an enterprise, bankruptcy
For citationLutsenko E.V., Kovalenko A.V., Pechurina E.K., Urtenov M.A.H. Оpen personal intellectual technology for development and application of adaptive methods of assessment of investment attractiveness and creditworthiness of enterprises. Perm University Herald. Economy, 2019, vol. 14, no. 1, pp. 20–50. DOI 10.17072/1994-9960-2019-1-20-50
AcknowledgementsThe study was financially supported with the Russian Foundatin for Basic Research and the authority of Krasnodar Kai in the framework of the scientific project No. 18-410-230036 p_a.
References1. Grechenyuk A.V., Grechenyuk O.N. Sravnitel'nyi analiz rossiiskikh i zarubezhnykh podkhodov k analizu finansovogo sostoyaniya organizatsii [Comparative analysis of Russian and foreign approaches to the analysis of the financial condition of an organization]. Audit i finansovyi analiz [Audit and Financial Analysis], 2015, no. 1, pp. 217–223. (In Russian).
2. Shvetsova O.V. Sravnitel'naya kharakteristika rossiiskikh i zarubezhnykh podkhodov k formirovaniyu informatsii o finansovykh rezul'tatakh v otchetnosti [Comparative characteristic of Russian and foreign approaches to the formation of information on financial results in financial statements]. Audit i finansovyi analiz [Audit and Financial Analysis], 2013, no. 4, pp. 101–104. (In Russian).
3. Manina N.V., Nikolaeva M.O. Zarubezhnyi opyt ucheta i analiza finansovykh rezul'tatov organizatsii [Foreign experience of accounting and analysis of financial results of an organization]. Molodoi uchenyi [Young Scientist], 2016, no. 6, pp. 498–501. (In Russian).
4. Kudasheva V.A. Osobennosti sostavleniya finansovoi otchetnosti v stranakh s kontinental'noi model'yu ucheta [Features of financial reporting in countries with an continental accounting model]. (In Russian) Available at: http://www.rusnauka.com/1_NIO_2012/Economics/7_98688.doc.htm (accessed 20.01.2019).
5. Baranov A.V., Zhmin'ko A.E. Sravnitel'naya kharakteristika formirovaniya pokazatelei otchetnosti o pribylyakh i ubytkakh v otechestvennoi zarubezhnoi praktik [Comparative characteristics of the formation of indicators of profit and loss reporting in the domestic foreign practice]. Vse dlya bukhgaltera [Everuthing for an Accountant], 2007, no. 8 (200), pp. 19–22.
6. Brealey R., Myers S., Allen F. Principles of corporate finance. 10th еd. McGraw-Hill/Irwin, 2010. 968 p.
7. Fabozzi F.J., Markowitz H.M. The theory and practice of investment management: Asset allocation, valuation, portfolio construction, and strategies. Wiley, 2011. 725 p.
8. Benninga S. Financial modelling. 3rd ed. The MIT Press, 2008. 1168 p.
9. Bodie Z., Kane A., Marcus A.J. Investments. McGraw-Hill, 2014. 1080 p.
10. Damodaran A. Investment valuation: Tools and techniques for determining the value of any asset. 3rd еd. John Wiley and Sons, 2012. 974 p.
11. Berk J., DeMarzo P. Corporate finance. 3rd ed. Prentice Hall, 2013. 1141 p.
12. Barth M.E., Clement M.B., Foster G., Kasznik R. Brand values and capital market valuation. Available at: https://ssrn.com/abstract=98748 (accessed 20.01.2019).
13. Foster G., Kasznik R., Sidhu B.K. International equity valuation: the relative importance of country and industry factors versus company‐specific financial reporting information. Accounting and Finance, 2012, vol. 52, iss. 3, pp. 767–817.
14. Bettman J.L., Sault S.J., Schultz E.L. Fundamental and technical analysis: Substitutes or complements? Accounting and Finance, 2009, vol. 49, iss. 1, pp. 21–36.
15. Altman E., Sabato G. Modelling credit risk for SMEs: Evidence from the US market. Abacus, 2007, vol. 43, iss. 3, pp. 332–357.
16. Altman E.I., Sabato G., Wilson N. The value of non-financial information in small and medium-sized enterprise risk management. The Journal of Credit Risk, 2010, vol. 6, no. 2, pp. 1–33.
17. Bhandari S.B., Iyer R. Predicting business failure using cash flow statement based measures. Managerial Finance, 2013, vol. 39, iss. 7, pp. 667–676.
18. Oz I.O., Yelkenci T. The generalizability of financial distress prediction models: Evidence from Turkey. Journal of Accounting and Management Information Systems, 2015, vol. 14, no. 4, pp. 685–703.
19. Richardson G., Taylor G., Lanis R. The impact of financial distress on corporate tax avoidance spanning the global financial crisis: Evidence from Australia. Economic Modeling, 2015, vol. 44, pp. 44–53.
20. Charitou A., Dionysiou D., Lambertides N., Trigeorgis L. Alternative bankruptcy prediction models using option pricing theory. Journal of Banking and Finance, 2013, vol. 37, iss. 7, pp. 2329–2341.
21. Gupta J., Wilson N., Gregoriou A., Healy J. The value of operating cash flow in modelling credit risk for SMEs. Applied Financial Economics, 2014, vol. 24, no. 9, pp. 649–660.
22. Jardin P. Bankruptcy prediction using terminal failure processes. European Journal of Operational Research, 2015, vol. 242, no. 1, pp. 286–303. doi: 10.1016/j.ejor.2014.09.059.
23. Tinoco M.H., Wilson N. Financial distress and bankruptcy prediction among listed companies using accounting, market and macroeconomic variables. International Review of Financial Analysis, 2013, vol. 30, pp. 394–419.
24. Oz I.O., Yelkenci T. A theoretical approach to financial distress prediction modeling. Managerial Finance, 2017, vol. 43, no. 2, pp. 212–230. doi: 10.1108/MF-03-2016-0084.
25. Carvalho C., Fisher J. D., Pettenuzzo D. Optimal asset allocation with multivariate bayesian dynamic linear models. Working Paper Series, 2018, 123. Available at: http://www.brandeis.edu/economics/ RePEc/brd/doc/Brandeis_WP123.pdf (accessed 20.01.2019).
26. Carriero A., Clark T.E., Marcellino M. Large vector autoregressions with stochastic volatility and flexible priors. Federal Reserve Bank of Cleveland Working Paper, 2016, no. 16–17.
27. Dangl T., Halling M. Predictive regressions with time-varying coefficients. Journal of Financial Economics, 2012, no. 106 (1), pp. 157–181.
28. Gelman A., Hill J. Data analysis using regression and multilevel/hierarchical models. Cambridge, Cambridge University Press, 2006. 648 p.
29. Johannes M., Korteweg A., Polson N. Sequential learning, predictability, and optimal portfolio returns. The Journal of Finance, 2014, no. 69 (2), pp. 611–644.
30. Pettenuzzo D., Timmermann A., Valkanov R. Forecasting stock returns under economic constraints. Journal of Financial Economics, 2014, no. 114 (3), pp. 517–553.
31. Zhao Z.Y., Xie M., West M. Dynamic dependence networks: Financial time series forecasting and portfolio decisions. Applied Stochastic Models in Business and Industry, 2016, no. 32 (3), pp. 311–332.
32. Kauppi H. Predicting the direction of the fed's target rate. Journal of Forecasting, 2012, no. 31 (1), pp. 47–67.
33. Grydaki M., Bezemer D. The role of credit in the great moderation: A multivariate GARCH approach. Journal of Banking and Finance, 2013, no. 37, pp. 4615–4626.
34. Noskova A.R., Alekseev A.O. Dostovernoe prognozirovanie veroyatnosti bankrotstva predpriyatii stroitel'noi otrasli s pomoshch'yu metoda sistemno-kognitivnogo analiza [Reliable prediction of the probability of bankruptcy of enterprises in the construction industry using the method of system-cognitive analysis]. Upravlenie finansovymi riskami [Management of Financial Risks], 2018, no. 3, pp. 218–224. (In Russian).
35. Lutsenko E.V. Metrizatsiya izmeritel'nykh shkal razlichnykh tipov i sovmestnaya sopostavimaya kolichestvennaya obrabotka raznorodnykh faktorov v sistemno-kognitivnom analize i sisteme “Eidos” [Metrization of measuring scales of different types and joint comparable quantitative processing of heterogeneous factors in system-cognitive analysis and Edios system]. Politematicheskii setevoi elektronnyi nauchnyi zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta (Nauchnyi zhurnal KubGAU) [Polythematic Online Scientific Journal of Kuban State Agrarian University (Scientific Journal of KubSAU)], 2013, no. 92(08), pp. 61–71. (In Russian).
36. Lutsenko E.V. Otkrytaya masshtabiruemaya interaktivnaya intellektual'naya on-line sreda dlya obucheniya i nauchnykh issledovanii na baze ASK-analiza i sistemy “Eidos” [Intelligent scalable open interactive online environment for teaching and researching on the basis of ASC-analysis and “Eidos” system]. Politematicheskii setevoi elektronnyi nauchnyi zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta (Nauchnyi zhurnal KubGAU) [Polythematic Online Scientific Journal of Kuban State Agrarian University (Scientific Journal of KubSAU)], 2017, no. 130(06), pp. 1–55.
37. Baranovskaya T.P., Kovalenko A.V., Urtenov M.Kh., Karmazin V.N. Sovremennye matematicheskie metody analiza finansovo-ekonomicheskogo sostoyaniya predpriyatiya: monografiya [Modern mathematical methods of analysis of financial and economic condition of the enterprise: A monograph]. Krasnodar, KubGAU, 2009. 224 p. (In Russian).
38. Kovalenko A.V. Otsenka kreditosposobnosti zaemshchika pri pomoshchi neironnykh setei i nechetkikh mnozhestv [Assessment of a borrower's creditworthiness using neural networks and fuzzy sets]. Sovremennoe sostoyanie i prioritety razvitiya fundamental'nykh nauk v regionakh: trudy III Vserossiiskoi nauchnoi konferentsii molodykh uchenykh i studentov, Krasnodar, 2–5 oktyabrya 2006 g. [Current State and Priorities of Fundamental Sciences in the Regions. Proceedings of the III Russian Scientific Conference of Young Scientists and Students, Krasnodar, October 2–5, 2006]. Krasnodar, 2006, pp. 190–192. (In Russian).
39. Shevchenko I.V., Karmazin V.N., Kovalenko A.V. Kompleksnaya otsenka kreditosposobnosti predpriyatii malogo i srednego biznesa s pomoshch'yu nechetkoi produktsionnoi sistemy [Complex assessment of creditworthiness of small and medium businesses using a fuzzy production system]. Finansovaya analitika: problemy i resheniya [Financial Analytics: Science and Experience], 2008, no. 2 (2), pp. 81–86. (In Russian).
40. Kovalenko A.V. Neironnaya set' i nechetkie mnozhestva, kak instrument otsenki kreditosposobnosti zaemshchika [Neural network and fuzzy sets as a tool for assessing the creditworthiness of the borrower]. Prikladnaya matematika XXI veka: materialy VI ob"edinennoi nauchnoi konferentsii studentov i aspirantov fakul'teta prikladnoi matematiki [Applied Mathematics of the XXI Century. Proceedings of the VI Joint Scientific Conference of Students and Postgraduates of the Faculty of Applied Mathematics]. Krasnodar, Kubanskii gosudarstvennyi universitet Publ., 2006, pp. 56–58. (In Russian).
41. Kovalenko A.V., Karmazin V.N. Diagnostika sostoyaniya predpriyatiya na osnove nechetkikh produktsionnykh sistem [Diagnosis of the state of an enterprise on the basis of fuzzy production systems]. Trudy Kubanskogo gosudarstvennogo agrarnogo universiteta [Proceedings of Kuban State Agrarian University], 2008, no. 11, pp. 20–27. (In Russian).
42. Kovalenko A.V., Karmazin V.N. Nechetkoe modelirovanie v srede matlab kreditosposobnosti predpriyatii malogo i srednego biznesa [Fuzzy modeling in matlab creditworthiness of small and medium businesses]. Proektirovanie nauchnykh i inzhenernykh prilozhenii v srede MATLAB: trudy vserossiiskoi nauchnoi konferenzii [Design of Scientific and Engineering Applications in MATLAB. Proceedings of Russian Scientific Conference]. Sankt-Peterburg, Sankt-Peterburgskii universitet Publ., 2007, pp. 1509–1520. (In Russian).
43. Zaikina L.N., Kovalenko A.V., Urtenov M.Kh. Klasternyi analiz finansovo-ekonomicheskogo sostoyaniya predpriyatii stroitel'noi otrasli [Cluster analysis of the financial and economic conditions of building business branch]. Politematicheskii setevoi elektronnyi nauchnyi zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta (Nauchnyi zhurnal KubGAU) [Polythematic Online Scientific Journal of Kuban State Agrarian University (Scientific Journal of KubSAU)], 2010, no. 60 (06), pp. 189–200. (In Russian).
44. Lutsenko E.V. Avtomatizirovannyi sistemno-kognitivnyi analiz v upravlenii aktivnymi ob"ektami (sistemnaya teoriya informatsii i ee primenenie v issledovanii ekonomicheskikh, sotsial'no-psikhologicheskikh, tekhnologicheskikh i organizatsionno-tekhnicheskikh sistem) [Automated system-cognitive analysis in the management of active objects (system theory of information and its application in the study of economic, socio-psychological, technological and organizational-technical systems)]. Krasnodar, KubGAU Publ., 2002. 605 p. (In Russian).
45. Lutsenko E.V. Invariantnoe otnositel'no ob"emov dannykh nechetkoe mul'tiklassovoe obobshchenie F-mery dostovernosti modelei Van Rizbergena v ASK-analize i sisteme “Eidos” [Invariant to volume of data, a fuzzy multiclass generalizationof f-measures of plausibility in Van Rijsbergen models in ASC-analysis and in the “Eidos” system]. Politematicheskii setevoi elektronnyi nauchnyi zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta (Nauchnyi zhurnal KubGAU) [Polythematic Online Scientific Journal of Kuban State Agrarian University (Scientific Journal of KubSAU)], 2017, no. 126 (2), pp. 1–32.
46. Lutsenko E.V. Sistemnaya teoriya informatsii i nelokal'nye interpretiruemye neironnye seti pryamogo scheta [System theory of information and nonlocal interpreted neural networks of direct account]. Politematicheskii setevoi elektronnyi nauchnyi zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta (Nauchnyi zhurnal KubGAU) [Polythematic Online Scientific Journal of Kuban State Agrarian University (Scientific Journal of KubSAU)], 2003, no. 1 (001), pp. 76–88.
47. Orlov A.I., Lutsenko E.V. Sistemnaya nechetkaya interval'naya matematika [System fuzzy interval mathematics]. Krasnodar, KubGAU Publ., 2014. 600 p.